On the Lower Order Terms of the Asymptotic Expansion of Zelditch

نویسنده

  • ZHIQIN LU
چکیده

A projective algebraic manifold M is a complex manifold in certain projective space CPm, m ≥ dimC M = n. The hyperplane line bundle of CPm restricts to an ample line bundle L onM . The bundle is a polarization onM . Suppose g is a Kähler metric on M . We say g is a polarized Kähler metric with respect to L, if the corresponding Kähler form represents the first Chern class c1(L) of L in H 2(M,Z). Given any polarized Kähler metric g, there is a Hermitian metric h on L whose Ricci form is equal to ωg. For each positive integer m > 0, the Hermitian metric h induces a Hermitian metric hm on Lm. Let {Sm 0 , · · · , Sm dm−1} be an orthonormal basis of the space H 0(M,Lm) of all holomorphic global sections of Lm. Such a basis {Sm 0 , · · · , Sm dm−1} induces a holomorphic embedding φm of M into CP dm−1 by assigning the point x of M to [Sm 0 (x), · · · , Sm dm−1(x)] in CP dm−1. Let gFS be the standard Fubini-Study metric on CP dm−1, i.e., ωFS = √ −1 2π ∂∂ log dm−1 i=0 |wi| for a homogeneous coordinate system [w0, · · · , wdm−1] of CP dm−1. The 1 m multiple of gFS on CP dm−1 restricts to a Kähler metric 1 mφ ∗ mgFS on M . This metric is a polarized Kähler metric on M and is called the Bergmann metric with respect to L. One of the main theorem in [12] is the following

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Distributions of Estimators of Eigenvalues and Eigenfunctions in Functional Data

Functional data analysis is a relatively new and rapidly growing area of statistics. This is partly due to technological advancements which have made it possible to generate new types of data that are in the form of curves. Because the data are functions, they lie in function spaces, which are of infinite dimension. To analyse functional data, one way, which is widely used, is to employ princip...

متن کامل

Numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type

In this paper, we have proposed a numerical method for singularly perturbed  fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and  finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided  in...

متن کامل

The Asymptotic Tian-yau-zelditch Expansion on Riemann Surfaces with Constant Curvature

Let M be a regular Riemann surface with a metric which has constant scalar curvature ρ. We give the asymptotic expansion of the sum of the square norm of the sections of the pluricanonical bundles K M . That is, dm−1 X i=0 ‖Si(x0)‖ 2 hm ∼ m(1 + ρ 2m ) +O „

متن کامل

Introducing a New Lifetime Distribution of Power Series Distribution of the Family Gampertz

In this Paper, We propose a new three-parameter lifetime of Power Series distributions of the Family Gampertz with decreasing, increasing, increasing-decreasing and unimodal Shape failure rate. The distribution is a Compound version of of the Gampertz and Zero-truncated Possion distributions, called the Gampertz-Possion distribution (GPD). The density function, the hazard rate function, a gener...

متن کامل

Nonlinear analytical solution of nearly incompressible hyperelastic cylinder with variable thickness under non-uniform pressure by perturbation technique

In this paper, nonlinear analytical solution of pressurized thick cylindrical shells with variable thickness made of hyperelastic materials is presented. The governing equilibrium equations for the cylindrical shell with variable thickness under non-uniform internal pressure are derived based on first-order shear deformation theory (FSDT). The shell is assumed to be made of isotropic and homoge...

متن کامل

Asymptotic distributions of Neumann problem for Sturm-Liouville equation

In this paper we apply the Homotopy perturbation method to derive the higher-order asymptotic distribution of the eigenvalues and eigenfunctions associated with the linear real second order equation of Sturm-liouville type on $[0,pi]$ with Neumann conditions $(y'(0)=y'(pi)=0)$ where $q$ is a real-valued Sign-indefinite number of $C^{1}[0,pi]$ and $lambda$ is a real parameter.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998